0%

poj.3977.Subset

Subset

题目

3977.Subset

描述


Given a list of N integers with absolute values no larger than 1015, find a non empty subset of these numbers which minimizes the absolute value of the sum of its elements. In case there are multiple subsets, choose the one with fewer elements.
The input contains multiple data sets, the first line of each data set contains N <= 35, the number of elements, the next line contains N numbers no larger than 1015 in absolute value and separated by a single space. The input is terminated with N = 0
For each data set in the input print two integers, the minimum absolute sum and the number of elements in the optimal subset.

—-

subset sum problem 子集和问题
有N个数,可能为负数,[- 10的15次方,10的15次方之间],求子集和中 绝对值最小的子集


折半搜索

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
#include <iostream>
#include <vector>
#include <queue>
#include <map>
#include <algorithm>
#include <ctime>
using namespace std;
long long anssum = LLONG_MAX;
int ansnum = 1000;

struct Pair
{
long long sum;
int num;

Pair()
{
}
Pair(long long s, int n)
{
sum = s;
num = n;
}
bool operator<(const Pair& p)
{
//return id > s.id;//降序排列
if (sum == p.sum)
{
return num < p.num;
}
return sum < p.sum;//升序排列
}
};

bool cmp(Pair a, Pair b) {
if (a.sum == b.sum) return a.num < b.num;
return a.sum < b.sum;
}
int approximate(int i, int j, vector<Pair>& sums, long long sum);
int Subset(int n, vector<long long>& v
,vector<Pair>& sums)
{
int counter = 0;
int size = counter;
for (int i = 0; i < n; i++)
{
size = counter;
sums[counter].sum = v[i];
sums[counter].num = 1;
counter++;
for (int j = 0; j < size; j++)
{
sums[counter].sum=sums[j].sum+ v[i];
sums[counter].num= sums[j].num + 1;
counter++;
}
}

return counter;
}
long long ABS(long long a)
{
return a >= 0 ? a : -a;
}
void Merge(int counter1,vector< Pair>& sums1
,int counter2, vector<Pair>& sums2)
{
long long tempsum;
for (int i = 0; i < counter1; i++)
{
tempsum = ABS(sums1[i].sum);
if (tempsum > anssum)
{
}
else if (tempsum < anssum)
{
anssum = tempsum;
ansnum = sums1[i].num;
}
else if (tempsum == anssum)
{
ansnum = ansnum < sums1[i].num
? ansnum : sums1[i].num;
}

//int j = approximate(0, counter2 - 1, sums2, -sums1[i].sum);
//vector<Pair>::iterator iter = lower_bound(sums2.begin(), sums2.begin() + counter2, Pair(-sums1[i].sum, 0), cmp);
int j = lower_bound(sums2.begin(), sums2.begin() + counter2, Pair(-sums1[i].sum,0), cmp) - sums2.begin();
if (j < counter2)
{
tempsum = ABS(sums1[i].sum + sums2[j].sum);
if (tempsum > anssum)
{
}
else if (tempsum < anssum)
{
anssum = tempsum;
ansnum = sums1[i].num + sums2[j].num;
}
else if (tempsum == anssum)
{
ansnum = ansnum < sums1[i].num + sums2[j].num
? ansnum : sums1[i].num + sums2[j].num;
}
}

if (j > 0)
{
j--;
tempsum = ABS(sums1[i].sum + sums2[j].sum);
if (tempsum > anssum)
{
}
else if (tempsum < anssum)
{
anssum = tempsum;
ansnum = sums1[i].num + sums2[j].num;
}
else if (tempsum == anssum)
{
ansnum = ansnum < sums1[i].num + sums2[j].num
? ansnum : sums1[i].num + sums2[j].num;
}
}
}

int j = lower_bound(sums2.begin(), sums2.begin() + counter2, Pair(0, 0), cmp) - sums2.begin();
if (j < counter2)
{

tempsum = ABS(sums2[j].sum);
if (tempsum > anssum)
{
}
else if (tempsum < anssum)
{
anssum = tempsum;
ansnum = sums2[j].num;
}
else if (tempsum == anssum)
{
ansnum = ansnum < sums2[j].num
? ansnum : sums2[j].num;
}
}

if (j > 0)
{
j--;
tempsum = ABS(sums2[j].sum);
if (tempsum > anssum)
{
}
else if (tempsum < anssum)
{
anssum = tempsum;
ansnum = sums2[j].num;
}
else if (tempsum == anssum)
{
ansnum = ansnum < sums2[j].num
? ansnum : sums2[j].num;
}
}
}

int approximate(int i,int j, vector<Pair>& sums, long long sum)
{
if (i == j)
{
return i;
}
int m = i + (j - i) / 2;
if (sums[m].sum <= sum && sums[m + 1].sum >= sum)
{
if (sums[m].sum - sum == sums[m + 1].sum - sum)
{
return sums[m].num < sums[m +1].num? m : m + 1;
}
else
{
return sums[m].sum - sum <= sums[m + 1].sum - sum ? m : m + 1;
}
}
else if (sums[m].sum > sum)
{
return approximate(i, m, sums, sum);
}
else if (sums[m].sum < sum)
{
return approximate(m + 1, j, sums, sum);
}
}

int main()
{
int n;
while (cin >> n)
{
if (n == 0)
{
break;
}
vector<long long> v(n);
for (int i = 0; i < n; i++)
{
cin >> v[i];
}

anssum = LLONG_MAX;
ansnum = n;
//sort(v.begin(), v.end());
vector<long long> v1;
vector<long long> v2;
for (int i = 0; i < n; i++)
{
if (i < ((n + 1) / 2))
{
v1.push_back(v[i]);
}
else
{
v2.push_back(v[i]);
}
}

vector<Pair> sums1(2<<((n + 1) / 2));
vector<Pair> sums2(2<<(n - (n + 1) / 2));

//clock_t start, end;
//start = clock();
int counter1 = Subset((n + 1) / 2, v1, sums1);
//end = clock();
//cout << (double)(end - start) / CLOCKS_PER_SEC << endl;

//start = clock();
int counter2 = Subset(n - (n + 1) / 2, v2, sums2);
//end = clock();
//cout << (double)(end - start) / CLOCKS_PER_SEC << endl;

//start = clock();
sort(sums2.begin(), sums2.begin() + counter2);
//end = clock();
//cout << (double)(end - start) / CLOCKS_PER_SEC << endl;

//start = clock();
Merge(counter1, sums1, counter2, sums2);
//end = clock();
//cout << (double)(end - start) / CLOCKS_PER_SEC << endl;
cout << anssum << " " << ansnum << endl;
}
return 0;
}